Time Series Analysis for Reddit Data: Trends, Seasonality, and Forecasting
Reddit data exhibits rich temporal patterns: daily posting cycles, weekly engagement rhythms, and event-driven spikes. This guide covers time series techniques for trend detection, seasonality decomposition, anomaly identification, and forecasting Reddit metrics.
What You'll Learn
Time series preparation for Reddit data, seasonal decomposition, trend analysis, anomaly detection, and forecasting with Prophet and statistical methods.
Reddit Temporal Patterns
| Pattern Type | Frequency | Reddit Example |
|---|---|---|
| Daily seasonality | 24-hour cycle | Peak posting at 10am-2pm EST |
| Weekly seasonality | 7-day cycle | Higher engagement weekdays vs weekends |
| Annual seasonality | Yearly cycle | Holiday spikes, summer slowdowns |
| Trend | Long-term | Subreddit growth/decline over months |
| Event-driven spikes | Irregular | Product launches, news events |
Data Preparation
Successfully installed statsmodels-0.14.0 prophet-1.1.5
import pandas as pd import numpy as np from datetime import datetime, timedelta from typing import Tuple class RedditTimeSeriesPrep: """Prepare Reddit data for time series analysis.""" def __init__(self, df: pd.DataFrame): self.df = df.copy() self._prepare_datetime() def _prepare_datetime(self): """Convert timestamps to datetime index.""" if 'created_utc' in self.df.columns: self.df['datetime'] = pd.to_datetime( self.df['created_utc'], unit='s', utc=True ) def aggregate_time_series( self, freq: str = 'H', agg_column: str = None, agg_func: str = 'count' ) -> pd.Series: """ Aggregate data into time series. Args: freq: Resampling frequency ('H'=hourly, 'D'=daily, 'W'=weekly) agg_column: Column to aggregate (None for count) agg_func: 'count', 'sum', 'mean', 'median' """ ts = self.df.set_index('datetime') if agg_column is None or agg_func == 'count': series = ts.resample(freq).size() else: series = ts[agg_column].resample(freq).agg(agg_func) # Fill missing periods with 0 series = series.fillna(0) return series def create_post_volume_series(self, freq: str = 'H') -> pd.Series: """Create post volume time series.""" return self.aggregate_time_series(freq=freq) def create_engagement_series(self, freq: str = 'D') -> pd.DataFrame: """Create multi-metric engagement series.""" ts = self.df.set_index('datetime') engagement_df = pd.DataFrame({ 'post_count': ts.resample(freq).size(), 'total_score': ts['score'].resample(freq).sum(), 'avg_score': ts['score'].resample(freq).mean(), 'total_comments': ts['num_comments'].resample(freq).sum(), 'avg_comments': ts['num_comments'].resample(freq).mean() }).fillna(0) return engagement_df def create_sentiment_series( self, freq: str = 'D', sentiment_col: str = 'sentiment' ) -> pd.DataFrame: """Create sentiment composition time series.""" ts = self.df.set_index('datetime') # Pivot sentiment counts sentiment_counts = ts.groupby([ pd.Grouper(freq=freq), sentiment_col ]).size().unstack(fill_value=0) # Add percentages total = sentiment_counts.sum(axis=1) for col in sentiment_counts.columns: sentiment_counts[f'{col}_pct'] = sentiment_counts[col] / total * 100 return sentiment_counts # Usage prep = RedditTimeSeriesPrep(posts_df) volume_series = prep.create_post_volume_series(freq='D') engagement_df = prep.create_engagement_series(freq='D') print(f"Time series length: {len(volume_series)} periods")
Seasonal Decomposition
Decompose Reddit time series into trend, seasonal, and residual components:
from statsmodels.tsa.seasonal import seasonal_decompose, STL import matplotlib.pyplot as plt class RedditSeasonalAnalysis: """Analyze seasonality in Reddit data.""" def __init__(self, series: pd.Series): self.series = series self.decomposition = None def classical_decomposition( self, period: int = None, model: str = 'additive' ): """ Classical seasonal decomposition. Args: period: Seasonality period (7 for weekly, 24 for hourly daily) model: 'additive' or 'multiplicative' """ if period is None: # Detect frequency freq = self.series.index.freq or pd.infer_freq(self.series.index) if 'H' in str(freq): period = 24 # Daily seasonality for hourly data elif 'D' in str(freq): period = 7 # Weekly seasonality for daily data else: period = 7 self.decomposition = seasonal_decompose( self.series, model=model, period=period, extrapolate_trend='freq' ) return self.decomposition def stl_decomposition(self, period: int = 7, robust: bool = True): """ STL decomposition (more robust to outliers). Args: period: Seasonal period robust: Use robust fitting (recommended for Reddit data) """ stl = STL( self.series, period=period, robust=robust ) self.decomposition = stl.fit() return self.decomposition def get_components(self) -> pd.DataFrame: """Get decomposition components as DataFrame.""" if self.decomposition is None: raise ValueError("Run decomposition first") return pd.DataFrame({ 'observed': self.series, 'trend': self.decomposition.trend, 'seasonal': self.decomposition.seasonal, 'residual': self.decomposition.resid }) def calculate_seasonality_strength(self) -> float: """Calculate strength of seasonality (0-1).""" if self.decomposition is None: raise ValueError("Run decomposition first") resid_var = np.var(self.decomposition.resid.dropna()) deseasonalized_var = np.var( self.decomposition.resid.dropna() + self.decomposition.seasonal.dropna() ) if deseasonalized_var == 0: return 0 strength = max(0, 1 - resid_var / deseasonalized_var) return strength def plot_decomposition(self) -> plt.Figure: """Plot decomposition components.""" if self.decomposition is None: raise ValueError("Run decomposition first") fig = self.decomposition.plot() fig.set_size_inches(12, 10) plt.tight_layout() return fig # Usage analyzer = RedditSeasonalAnalysis(volume_series) decomp = analyzer.stl_decomposition(period=7) print(f"Seasonality strength: {analyzer.calculate_seasonality_strength():.3f}") analyzer.plot_decomposition() plt.show()
Anomaly Detection
Detect unusual spikes or drops in Reddit activity:
from scipy import stats import numpy as np class RedditAnomalyDetector: """Detect anomalies in Reddit time series.""" def __init__(self, series: pd.Series): self.series = series def zscore_detection(self, threshold: float = 3.0) -> pd.DataFrame: """ Detect anomalies using Z-score method. Args: threshold: Z-score threshold (3.0 is common) """ zscores = stats.zscore(self.series) anomalies = pd.DataFrame({ 'value': self.series, 'zscore': zscores, 'is_anomaly': np.abs(zscores) > threshold, 'anomaly_type': np.where( zscores > threshold, 'spike', np.where(zscores < -threshold, 'drop', 'normal') ) }) return anomalies def iqr_detection(self, multiplier: float = 1.5) -> pd.DataFrame: """ Detect anomalies using IQR method (robust to outliers). Args: multiplier: IQR multiplier (1.5 standard, 3.0 extreme) """ q1 = self.series.quantile(0.25) q3 = self.series.quantile(0.75) iqr = q3 - q1 lower_bound = q1 - multiplier * iqr upper_bound = q3 + multiplier * iqr anomalies = pd.DataFrame({ 'value': self.series, 'lower_bound': lower_bound, 'upper_bound': upper_bound, 'is_anomaly': (self.series < lower_bound) | (self.series > upper_bound), 'anomaly_type': np.where( self.series > upper_bound, 'spike', np.where(self.series < lower_bound, 'drop', 'normal') ) }) return anomalies def rolling_zscore_detection( self, window: int = 7, threshold: float = 2.5 ) -> pd.DataFrame: """ Detect anomalies using rolling window Z-score. Better for data with trends. Args: window: Rolling window size threshold: Z-score threshold """ rolling_mean = self.series.rolling(window=window, center=True).mean() rolling_std = self.series.rolling(window=window, center=True).std() zscores = (self.series - rolling_mean) / rolling_std anomalies = pd.DataFrame({ 'value': self.series, 'rolling_mean': rolling_mean, 'rolling_std': rolling_std, 'zscore': zscores, 'is_anomaly': np.abs(zscores) > threshold, 'anomaly_type': np.where( zscores > threshold, 'spike', np.where(zscores < -threshold, 'drop', 'normal') ) }) return anomalies def get_anomaly_summary(self, anomalies_df: pd.DataFrame) -> dict: """Summarize detected anomalies.""" anomaly_mask = anomalies_df['is_anomaly'] summary = { 'total_anomalies': anomaly_mask.sum(), 'anomaly_rate': anomaly_mask.mean() * 100, 'spikes': (anomalies_df['anomaly_type'] == 'spike').sum(), 'drops': (anomalies_df['anomaly_type'] == 'drop').sum(), 'anomaly_dates': anomalies_df[anomaly_mask].index.tolist(), 'max_spike': anomalies_df.loc[anomaly_mask, 'value'].max() if anomaly_mask.any() else None } return summary # Usage detector = RedditAnomalyDetector(volume_series) anomalies = detector.rolling_zscore_detection(window=7, threshold=2.5) summary = detector.get_anomaly_summary(anomalies) print(f"Found {summary['total_anomalies']} anomalies ({summary['anomaly_rate']:.1f}%)") print(f"Spikes: {summary['spikes']}, Drops: {summary['drops']}")
Anomaly Context
Not all statistical anomalies are meaningful. Cross-reference detected spikes with external events (product launches, news, holidays) to understand causes. A "spike" on Christmas Day might be expected behavior, not an anomaly.
Forecasting with Prophet
Facebook Prophet is excellent for Reddit data with multiple seasonalities:
from prophet import Prophet from prophet.diagnostics import cross_validation, performance_metrics class RedditForecaster: """Forecast Reddit metrics using Prophet.""" def __init__(self, series: pd.Series): self.series = series self.model = None self.forecast = None def prepare_prophet_data(self) -> pd.DataFrame: """Convert series to Prophet format.""" df = pd.DataFrame({ 'ds': self.series.index.tz_localize(None) if self.series.index.tz else self.series.index, 'y': self.series.values }) return df def train( self, yearly_seasonality: bool = True, weekly_seasonality: bool = True, daily_seasonality: bool = False, holidays: pd.DataFrame = None ): """ Train Prophet model. Args: yearly_seasonality: Include yearly patterns weekly_seasonality: Include weekly patterns daily_seasonality: Include daily patterns (for hourly data) holidays: DataFrame with holiday effects """ self.model = Prophet( yearly_seasonality=yearly_seasonality, weekly_seasonality=weekly_seasonality, daily_seasonality=daily_seasonality, changepoint_prior_scale=0.05, # Flexibility of trend seasonality_prior_scale=10, # Flexibility of seasonality interval_width=0.95 # 95% confidence interval ) # Add holidays if provided if holidays is not None: self.model.add_country_holidays(country_name='US') # Add custom seasonality for Reddit self.model.add_seasonality( name='monthly', period=30.5, fourier_order=5 ) # Fit model prophet_df = self.prepare_prophet_data() self.model.fit(prophet_df) return self.model def predict(self, periods: int = 30, freq: str = 'D') -> pd.DataFrame: """Generate forecast for future periods.""" if self.model is None: raise ValueError("Train model first") future = self.model.make_future_dataframe(periods=periods, freq=freq) self.forecast = self.model.predict(future) return self.forecast def cross_validate( self, initial: str = '365 days', period: str = '30 days', horizon: str = '30 days' ) -> pd.DataFrame: """Perform time series cross-validation.""" if self.model is None: raise ValueError("Train model first") cv_results = cross_validation( self.model, initial=initial, period=period, horizon=horizon ) metrics = performance_metrics(cv_results) return metrics def get_forecast_summary(self, periods: int = 7) -> dict: """Summarize forecast for specified periods.""" if self.forecast is None: raise ValueError("Generate forecast first") future_only = self.forecast.tail(periods) return { 'dates': future_only['ds'].tolist(), 'predictions': future_only['yhat'].round(2).tolist(), 'lower_bound': future_only['yhat_lower'].round(2).tolist(), 'upper_bound': future_only['yhat_upper'].round(2).tolist(), 'avg_prediction': future_only['yhat'].mean(), 'trend_direction': 'increasing' if future_only['yhat'].iloc[-1] > future_only['yhat'].iloc[0] else 'decreasing' } def plot_forecast(self) -> plt.Figure: """Plot forecast with components.""" if self.forecast is None: raise ValueError("Generate forecast first") fig1 = self.model.plot(self.forecast) fig2 = self.model.plot_components(self.forecast) return fig1, fig2 # Usage forecaster = RedditForecaster(volume_series) forecaster.train() forecast = forecaster.predict(periods=14) summary = forecaster.get_forecast_summary(periods=7) print(f"Next 7 days: {summary['avg_prediction']:.0f} avg posts/day") print(f"Trend: {summary['trend_direction']}") # Cross-validation metrics = forecaster.cross_validate() print(f"MAPE: {metrics['mape'].mean():.2%}")
Model Evaluation Metrics
| Metric | Formula | Good Value | Use Case |
|---|---|---|---|
| MAE (Mean Absolute Error) | avg|actual - predicted| | Lower is better | General accuracy, same units |
| RMSE (Root Mean Square Error) | sqrt(avg(actual - predicted)^2) | Lower is better | Penalizes large errors |
| MAPE (Mean Absolute Percentage Error) | avg|error/actual| * 100 | <10% good, <20% acceptable | Scale-independent accuracy |
| Coverage | % actual within confidence interval | Close to interval width (e.g., 95%) | Uncertainty estimation |
Pro Tip: Multiple Baselines
Compare your forecast against simple baselines: naive (yesterday's value), seasonal naive (same day last week), and mean (historical average). Your model should beat these to be valuable.
Track Reddit Trends Automatically
reddapi.dev provides built-in trend analysis and alerts. Monitor topics, detect emerging discussions, and track sentiment changes without building your own time series pipeline.
Explore Trend AnalysisFrequently Asked Questions
What time frequency should I use for Reddit data?
It depends on your use case. For real-time monitoring, use hourly data. For trend analysis, daily aggregation works well. For long-term patterns, weekly data reduces noise. Match your forecast horizon to your frequency—don't forecast months ahead with hourly data.
How do I handle missing periods in Reddit data?
Fill missing periods with zeros for count data (post volume) or interpolation for continuous data (sentiment scores). Prophet handles missing data automatically. For significant gaps, consider excluding that period or treating pre/post gap as separate series.
Why does my forecast not capture sudden spikes?
Statistical forecasts predict "normal" behavior, not one-time events. For event-driven spikes, you need: (1) external regressors (e.g., planned product launches), (2) anomaly detection separate from forecasting, or (3) ensemble models that combine statistical forecasts with event calendars.
How far ahead can I reliably forecast Reddit metrics?
Forecast reliability decreases rapidly with horizon. For Reddit data, 7-14 days is reasonable for daily data; beyond that, wide confidence intervals make forecasts less actionable. For longer horizons, focus on trends rather than specific values.
Should I forecast each subreddit separately?
Generally yes, if you have enough data per subreddit (3+ months of daily data). Each subreddit has unique posting patterns. However, hierarchical models can share strength across subreddits when individual data is sparse. Start with separate models and combine if needed.